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Spatial clustering

• Covered here - based on distance:
• K-means
• PAM & CLARA
• Hierarchical

• Not covered here - based on density and circles: 
• DBSCAN, OPTICS, SaTScan, BNS, GAM
• Dynamic spatio-temporal ST-DBSCAN

• Not covered here - based on network: 
• Voronoi/Dirichlet tesselation-based

• Not covered here – out of regional science:
• spatial transcriptomics in RNA analysis

We analyse spatially located
points (point-pattern), 
optionally with value assigned
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What and how
can we cluster?
• Points geo-located in space – we 

cluster their coordinates
(longitude and latitude, xy)

• Values z – multivariate
characteristics of observations
(no spatial aspect considered)

• Values z – multivariate
characteristics of observations –
to map them in their geo-
location

• Geo-located points xy and values
z jointly

In distance-based measures the core point is DISTANCE 
metrics. There are many options:

• Euclidean distance – to go straight ahead

• Manhattan distance – to move around the edges of 
the grid

• Minkowski distance – to use curve way

• Gower distance – for qualitative data

• Mahalanobis distance – to include correlations
between variables

• Hamming distance – to compare binary vectors
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K-means clustering
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Partitioning Around Medoids (PAM) & CLARA

CLARA is big data equivalent. 
It works as PAM but on 
subsample. The rest of 
points is assigned to clusters
using k nearest neighbours.
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Hierarchical clustering
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We can cut tree (dendrogram) at any heigh
to decide which clustering we choose. 



Clustering of geo-located points
• Straighforward implementation of points clustering is to 

catchment areas: schools, post-offices, supermarkets, sales
representatives

• With use of calibrated algorithms, one can predict cluster
assignement for any new point

• In case of known a priori number of cores k, k-means optimizes
the partitioning.

• Researchers complain if k is unknown and look for clue how to 
set k.  It can be optimised by comparison different potential k
and choosing the best division. 

• Brimicombe (2007) proposed dual approach – in first step one 
finds the density clusters (with GAM - Geographical Analysis 
Machine, or kernel density), and in the second step, one uses
them as initial points in k-means clustering. This automates the 
selection of k and speeds up the computations by setting starting 
centroids. 
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Clustering of values & mapping as clusters

• Most popular application appears in case
of Geographically Weighted Regression
(GWR) – GWR produces individual local
beta coefficients for each variable and 
observation, what makes it difficult to 
summary. 

• GWR coefficients in hedonic models can
be clustered and mapped. Clusters are
considered as submarkets.  

• It is always amazing in GWR hedonic
models that even if clustering of values is
non-spatial, clusters are mostly
continously spatial.

Values of GWR 
coefficients for 
selected variable
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Clusters of values
(GWR coefficients) 
for many variables

Both figures present rasterised data



Clustering locations & values

• When clustering values in locations one may
have dilema what to concentrate on. 

• This dilema can be mildered by using
methods that mix both clusterings.

• ClustGeo (Chavent et al., 2018) runs separate
clusterings and combines them by using
weighted dissimilarity (distance) matrices. 

• Its extension, BootstrapClustGeo (Distefano
et al.,2020) generates many potential
partitionings, links spatial and non-spatial 
components with Hamming distance, and as 
ClustGeo minimizes within-cluster inertia in 
mixture. 

• SKATER and REDCAP algorithms (Assuncao et 
al., 2006; Guo, 2008) build trees which are
later pruned. 
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Cluster coherence lines 
for locations and values. 
When cross, they set 
mixing parameter α. 

Partitioning which
balances data and 
location. 



Research studies involving clustering (1)

• Fire distribition in Sardinia (Bajocco et al., 2015)
• It uses hierarchical clustering to group the territorial units into similarly 

covered areas (features are phenological metrics and spatio-temporal 
dynamics of the vegetated land surface (NVDI, Normalized Difference 
Vegetation Index from satellite photos). 

• It gave clusters defining types of territories – they were mapped with 
cluster ID. 

• For each cluster group they checked the frequency of fires – they
assessed the natural conditions which increase and decrease fire-
proneness. 
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Research studies involving clustering (2)
• Spatial drift in demand for public transport tickets (Müller et al., 

2013)
• Firstly, it estimates GWR model for demand on bus tickets, using point and 

district data.

• GWR coefficients are clustered with k-means – individually for each variable

• Secondly, it estimates general spatial econometric model with the same 
variables as in GWR (to capture spatial autocorrelation), and additionaly with 
dummy variables for GWR clusters (they are to capture spatial heterogenity)
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Research studies involving clustering (3)

• Spatio-temporal stability of housing submarkets
(Kopczewska & Ćwiakowski, 2021)
• It estimates annual hedonic GWR models for housing

market for 10 years

• Point coefficients were rasterised – to get common spatial
reference

• Annual GWR coefficients are clustered with k-means –
one gets the sets of clusters for each year

• With Rand Index / Jaccard Similarity one checks for how
much the clusters overlap from period-to-period – this
shows spatio-temporal stability of submarkets

12

Kopczewska, K., & Ćwiakowski, P. (2021). Spatio-temporal stability of housing submarkets. Tracking spatial 
location of clusters of geographically weighted regression estimates of price determinants. Land Use Policy, 103, 
105292.



Software implementations
• Basic methods are available in R, in packages as: 

stats:: , ClusterR:: , cluster:: , fpc:: , factoextra:: , 
FactoMineR::

• Simultaneous clustering of values and locations
(spatially constrained clustering) is in ClustGeo:: 
and rgeoda:: packages.

• What is more: 
• Package spatialClust:: offers Spatial Clustering 

using Fuzzy Geographically Weighted
Clustering

• Package SpODT:: offers spatial oblique 
decision tree based on the classification and
regression tree

• Also, non-covered topics (network and density-
based clustering) are widely available in R: in 
dbscan::, geoGAM::, MapGam::, SpatialCPie::, 
SpatialEpi::, rsatscan::, graphscan::, rflexscan::, 
scanstatistics:: packages. 

Kopczewska, K. (2021). Applied 
Spatial Statistics and 
Econometrics. Data Analysis in R, 
Routledge
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